

<u>Chapter 7</u> <u>Common Elements in Winemaking and Maturation</u>

Different winemaking approaches

Yeast -> converts sugar in grape juice to alcohol. Natural wines = least human intervention as possible.

Common Elements in Winemaking and Maturation

<u>Oxygen (oxidation)</u>

- Gas reacts to grape juice
- Some positive/negative affects

Oxygen in winemaking

- Anaerobic winemaking = min/no oxygen influence
 - Used for wines with primary fruit characteristics
 - Grapes picked at night/chilled/airtight winery equipment (nitrogen/CO₂)

Oxygen in maturation

- If anaerobic -> airtight stainless steel/cement lined with epoxy resin vessel full to the brim (no oxygen influence)
- Aerobic maturation = wooden, oak vessels
 - Soften tannins/develop tertiary characteristics/change in colour (red, paler/white, golden)
- Small vessels (225-litre barriques) more oxidising as greater proportional surface area exposed. No more than 2 years in barrique.
- Larger vessels longer maturation potential
- If container not completely full = more oxygen/effect enhances (ie Oloroso Sherry) caramel/toffee
- Too much oxygen no fruit/stale not fit for sale

Sulfur dioxide

- Antioxidant and antiseptic (indispensable/must be used)
- Upper levels of SO₂ controlled too much is toxic
- SO₂ produced naturally in fermentation
- SO₂ kept low = too much and wine is harsh/lacks fruit

____Antioxidant effects

SO₂ protects grapes from oxygen - becomes 'bound' - must be replenished/monitored

Antiseptic

 SO_2 can be toxic to yeast/bacteria (unwanted flavours) - main yeast in winemaking can tolerate levels of SO_2 toxic to other species.

<u>Oak vessels</u>

- Fermentation and maturation
- Tannin from oak adds structure + textural complexity (toast/vanilla/smoke/cloves)
- Hygiene essential (no yeast/mold/bacteria)

Four factors to consider:

1. Species and origin of oak

European vs. American (France considered finest)

2. Size

Small vessels - larger surface area - greater effect (225-litre *barriques*/228-litre *piece*)

3. Production of oak barrels

Toasting (staves heated to bend) transforms tannins/flavour compounds (sweet spice/toast)

4. Age

Toasting diminishes after each use - cask with 4+ uses has no more flavour/tannin to impart

Oak alternatives

- Oak chips/staves = cheaper
- Oxidative effects can add small, controlled amount of oxygen

Inert Winery Vessels

Stainless steel

- Stainless steel/concrete
- Fermentation (can be used also as storage)

Concrete vessels

- Lined with inert epoxy resin (waterproof)
- Harder to clean
- Keeps temp consistent during fermentation without cost of additional equipment

(Glass bottles also inert vessels - storage + maturation) Grape Processing

Grapes get first dose of SO₂ upon arrival at winery Sorted by hand (individual grapes) if premium - (not used for high-volume).

Destemming and crushing

- Machine harvested = no stems
- Stems removed by machine that can also crush
- Crushing = breaks skin from juice (free run juice)
- Avoid seed damage (bitter oil/tannin)

Pressing

- Pressing = separating liquid and solid constituents of grape
- White grapes pressing before fermentation / black grapes pressing after fermentation
- Gentle pressing to keep seeds undamaged
- Vertifical 'basket' presses (old method) vertical press using a plate was raised/lowered by level (still happens in Champagne)
- Pneumatic press (newer method) inflatable rubber tube with a perforated, horizontal stainless steel cylinder larger area/more controlled. Closed tank to minimise oxygen.
- Fractions = separate liquid into different, individual pressings.

Adjustments

Made before/during/after fermentation Grape juice = must

Sugar and alcohol

- Enrichment = RCGM (rectified concentrated grape must) added to the must (before or during fermentation) more sugar for yeast to convert to heighten alcohol.
- Chaptalisation = sugar (not from grapes, ie sugar beet) added to must.
- Remove water concentrates sugars wine higher in alcohol/ also concentrates faults and reduces wine volume

Acid

- Acidification = addition of tartaric acid in powder form (used in hot climates)
- **Deacidification = acid neutralised by addition of alkali** (used in cool climates)

Fermentations

Alcoholic fermentation

- Yeast + sugar = $alcohol + CO_2$ (+ heat/flavours)
- Saccharomyces cerevisiae = common winemaking yeast
 - Tolerates high alcohol/SO₂
- Alcohol fermentation will not start is temp below 5°c will continue until all sugar consumed
- Alcoholic fermentation stops before all sugar consumed if (a) no nutrients left (besides sugar) and (b) temp above 35°c
- If sugar too high = yeast may struggle to start fermentation process
- If WM wants to keep some sugar fermentation stopped by killing/removing yeast
- Yeast removed by filtration after fermentation is halted by chiling to below 5°c.
- Control fermentation = choice of yeast/temperature management (more below)

<u>Yeast</u>

Ambient yeast (in grape bloom/in winery)	Cultured yeast (individual strains of S. Cerevisiae)
 Complex flavours Cannot control which yeasts Variation between batches Unsuitable for high volume 	 Performs well Attractive flavours Limits potential complexity of the wine

Temperature

- Too hot = yeast killed
- Fermentation temperature low keep aromatic flavours (white)
- Fermentation temperature higher extract colour/tanning (red)
- Excess heat removed by pumping over

Malolactic fermentation (MLF)

- Malic acid \rightarrow lactic acid
- Reduces acidity/adds buttery flavours + CO₂
- MLF encouraged by raising temperature and not adding SO₂ after fermentation
- Avoided by cool temp/SO₂ use/filtering out bacteria

Pre-bottling maturation and blending

Lees

- Cloudy dead yeast cells/grape fragments
- Over hours, these falls to bottom of the vessel
- Gross lees = unpleasant aromas/flavours
- Fines lees = (smaller particles) removed gradually
 - In contact for extra flavour/rich texture

Pre-bottling maturation

- Primary fruit flavours bottled after a few months (stored in stainless/inert)
- Tannin/alcohol/acidity/flavour benefit all needed for longer aging potential
- If aging/maturing vessel flavours (oak/oxidation) + sediment depositing all potential.

Blending

- Applicable to single variety + blend
- Usually after or during fermentation
- Potential for local winemaking constraints

Balance

• Adjust balance to enhance quality (ie, red wine - free run wine + press wine = higher tannin).

Consistency

- Consistency amongst bottles vital
- Small barrel wine less consistent can be moved to a large vat to smooth/blend
- Blending required if variations in fruit (different vineyards/harvesting) + slight inconsistencies

Style

- Blend to a consistent, yearly 'house' style ie, press fractions/ fermentation or maturation in different vessels/ only portion of wine MLF.
- Different grape varieties/vintage/vineyard to achieve their own style.

Clarification

<u>Fining</u>

Fining agent added to cause constituents to clump into larger forms - removed by filtering. Widely used - although some winemakers believes effects flavour/texture. <u>Sedimentation</u>

Racking = wine pumped into different vessels to remove gross lees. Repeated racking to remove sediment. (**Centrifuge - machine to speed up racking process -** expensive.) *Filtration*

Process of removing gross + fine lees (after fermentation/during maturation).

- Depth filtration: thick layer of material suitable for filtering gross lees.
 - Surface filtration: fine sieves expensive + clog up easily. Used after depth filtration.
 - Sterile filtration: also removes yeast/bacteria with pores small enough to still be present in wine.

Stabilisation

Change in slow, predictable manner (ie, Port 50-60 years of aging) Fining - adds clarity - seen as stabilisation technique Other important areas that require stabilisation:

- Tartrate Stability
 - Tartaric acid less soluble in wine than grape juice
 - Forms crystals called **tartrates** coloured by wine/harmless/flavourless ruin look.
 - Develop with long maturation in cellar / cool temperatures
 - To remove, WM chill wine to 0°c + filter out

• Microbiological Stability

- Yeast/bacteria can spoil a wine equipment must be kept clean.
- Fortified wines (high alcohol) and MLF (alcohol, acid, lack of nutrients) resistant to microbiological spoilage.
- No MLF/low-med alcohol/low acid/little residual sugar at risk of spoilage
- SO₂ and sterile filtration to avoid.
- Oxygen stability
 - Oxygen dissolved in wine/enters through packaging
 - Keep SO₂ topped up to avoid
 - \circ Bottles finished with CO₂ or nitrogen before filling to eliminate oxygen.

Packaging

Bottles and alternatives

Closures

- Protect wine from harm until consumed
- Must consider ease of use/bottling/manufacturing line
- Small oxygen positive tertiary flavours

• Cork

- Popular, original wine closure, balance of small oxygen for tertiary development
- TCA (Trichloroanisole) chemical present in some corks (stale/mouldy cardboard)

Synthetic cork

- Made from plastic
- Consumer within a year some premium brands use

Screw caps

- Aus/NZ used widely
- No taint/strong seal from air
- Preserve primary fruit
- Some now permit oxygen for tertiary development

Post-bottling maturation

- Most wines to be consumed within year
- Some wines mature in bottle (Port/German Rieslings/cru classes Bordeaux)

- Age undisturbed/cool (10-15°c)/dark/constant humidity/on its side/etc.